
SHIH-LIN CHANG 547 

mitted modes N o, are listed. The permitted modes are 
those with positive g or positive yr. Clearly, the number 
of permitted modes satisfies the relation, N o = 2(N -- 
NB, ~g). 

III. Discussion and conclusion 

With the above considerations, it has been shown that 
at the exact N-beam diffraction position yr and g 
always have the same sign. As mentioned above, the 
absorption coefficient of a permitted mode must be 
positive. The permitted mode should always have 
positive yr associated with it. For both o- and zr- 
polarized wavefields, the number of modes having 
negative absorption coefficients, according to (13) and 
Table 1, is equal to 2NBragg. The number of permitted 
modes is then the number of the rest of the modes, i.e. 
2N- -  2NBrag ~. In other words, it is twice the number of 
transmitted beams, including the incident one. This is 
exactly consistent with the characteristics of two-beam 
cases discussed above. Apparently, this relation also 
holds for N-beam Borrmann diffraction, in which no 
Bragg reflections are involved. The number of permit- 
ted modes equals the number of total possible modes, 
2N. 

Although this relation is quite general, it is not 
applicable to those cases which involve extremely 
asymmetric reflections. For such cases, higher-order 
terms of (Ak) need to be considered. This leads to more 
permitted modes since the equation of dispersion has 
the form of a high-order polynomial. Besides, extra 
modes may be introduced by some related physical 
phenomenon, such as the specular reflection of X-rays 
from the crystal surface where the glancing angle of the 
incident beam is less than 1 or 2 ° (Kishino & Kohra, 
1971). 

Nevertheless, without extremely asymmetric reflec- 
tion in N-beam dynamical diffraction, the relation Np = 
2 ( N -  NBragg ) holds as a general rule for determining 
the number of permitted modes of wave propagation. 
As stated before, the diffracted intensities can be 
calculated by solving the equations obtaining from the 
boundary conditions for these N o wavefields. Based on 
this, the interpretation of Aufhellung (Wagner, 1923; 
also quoted by Mayer, 1928) and Umwegangregung 
(Renninger, 1937) effects in terms of the dynamical 
theory of diffraction is possible. 
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Abstract 

The number of possible combinations of parallel four- 
membered rings, of the same kind, forming an eight- 
membered ring is systematically derived by a different 
method from that of Smith & Rinaldi [Mineral. Mag. 

0567-7394/79/040547-07501.00 

(1962). 33, 202-211]. 17 different configurations (in- 
eluding six enantiomorphic) in the UUDD ring (U and 
D represent upward- and downward-pointing tetra- 
hedra respectively), four different ones (two enantio- 
morphic) in the UDUD ring, and sixteen different ones 
(seven enantiomorphie) in the UUDD ring are shown 
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548 FRAMEWORK STRUCTURES FROM FOUR- AND EIGHT-MEMBERED RINGS 

with their new pattern representations and symbol 
notations. 

Introduction 

A simple convenient symbolism was developed by 
Smith & Rinaldi (1962) in order to classify and 
describe framework structures which are formed from 
parallel four- and eight-membered rings of TO 4 (T = 
Al, Si) tetrahedra. According to them, possible four- 
membered rings can be represented in terms of the 
codes UUDD, UDUD, UUUD, and UUUU, where the 
symbols U and D denote an upward and a downward 
pointing tetrahedron respectively. Various eight- 
membered rings can be formed by combining these 
four-membered rings. Imposing a restriction on repeat 
distances in the plane (less than 15 A), Smith & Rinaldi 
(1962) showed that there are 17 possible different 
configuration types for the arrangement of the UUDD 
ring, four types for the UDUD ring, seven types for the 
UUUD ring, and one type for the UUUU ring. 
However, there are no detailed explanations of the 
numbers of possible configurations, or of the relation 
between the symbol notation and the configuration. 
These problems are important as a first step towards 
consideration of more complex framework structures. 
This paper presents a different systematic derivation of 
the possible combinations, and a new notation system 
for the configurations. 

In the following treatment, various restrictions such 
as the repeating distances, or the parallelism of four- 
and eight-membered rings are the same as in Smith & 
Rinaldi (1962), and the trivial case of the UUUU ring is 
not discussed. 

Configurations based on the UUDD ring 

Fig. l(a) is a structure model of harmotome 
(BaAIzSi60~6.6H20), and Fig. l(b) the symbolized 
model of Smith & Rinaldi (1962). Now if we represent 
one UUDD ring by one square tile consisting of black 
and white triangles, in which a black triangle denotes 
the DD and a white one the UU, then the harmotome 
configurations can be shown as a tile arrangement 
pattern, as shown in Fig. 1 (c). It can be also considered 

U O 
U O D U 

O U 

D U 
U D D U 

U D 

(a) (b) (c) 
Fig. I. Three different representations of the harmotome structure 

(BaAIzSi60~6.6H20). (a) Original harmotome structure showing 
linkage between (Si, Al)O 4 tetrahedra (Sadanaga, Marumo & 
Tak~uchi, 1961). (b) UUDD symbol representation by Smith & 
Rinaldi (1962). (c) Pattern representation using black and white 
tiles. 

that this pattern is formed by putting four square tiles 
with different orientations into the four distinct boxes. 
Then the enumeration of possible combinations of the 
four-membered UUDD ring becomes equivalent to 
counting the number of different arrangement patterns 
of the tiles in the four boxes. 

Let the four boxes on a 2 x 2 board be denoted as a, 
b, c and d. Then each box can accept independently 
four differently oriented tiles as shown in Fig. 2(a). 

b a 

c d 

(a) 

( 1 )  ( z )  

(b) 

Fig. 2. (a) Four boxes abcd (left) and four different tile orientations 
(right). (b) Two rotationally equivalent patterns. 

a h c d 

(a) 

,\ A h A B D h h 

(b) 
Fig. 3. (a) Four different tile orientations (A,B,C,D) in four distinct 

boxes (a,b,c,d) in the UUDD ring. (b) Two examples of pattern- 
notation symbols. 
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Therefore the total number of possible arrangement 
patterns is 4 x 4 x 4 x 4 = 256. However, there are 
many rotationally equivalent patterns among them. 
Two patterns are rotationally equivalent if one can be 
transformed into the other by a rotation around the 
center of the board. One example is shown in Fig. 2(b), 
in which pattern (1) is transformed into pattern (2) by a 
90 ° anticlockwise rotation, and pattern (2) into pattern 
(1) by a similar clockwise rotation. 

We first count the total number of rotationally non- 
equivalent patterns using combinatorial mathematics. 
As stated above, a tile can take four orientations, which 
we call A, B, C and D in box a. The orientations B, C, 
and D can be obtained by transforming orientation A 
by 90, 180 and 270 ° anticlockwise rotations respec- 
tively, which are shown in the first column a in Fig. 
3(a). Now the tile in the box a can be transformed into 
the box b by a 90 ° anticlockwise rotation around the 
center of the board. In this operation, the orientations 
A, B, C and D in box a can be transformed into the new 
orientations shown in column b, which we call the 
orientations A, B, C and D in box b. Performing 
successive rotations, new orientations A, B, C and D in 
boxes c and d can be obtained. Using these orientation 
notations, any tile arrangement pattern can be 
represented simply by its sequence of orientation 
symbols in the order of boxes a, b, c and d. Two 
examples are shown in Fig. 3(b). One more advantage 
of this notation system is that all equivalent patterns 
can be expressed in terms of a cyclic permutation of the, 
starting orientation symbol. Thus a pattern denoted by 
the symbol B D A A  is equivalent to those denoted by 
DAAB,  A A B D  and A B D A .  Now we will count all the 
non-equivalent sequences. Let D = {a, b, c, d} be a set 
of four boxes on a board and R = {A, B, C, D} a set 
of four orientations of tiles. We can specify a cyclic 
group C 4 as a permutation group G acting on set D: 

G = I [abcd~ [abcd~ [abcd~ [abcd ~I 
~abcd]' ~bcda]' ~cdab]' ~dabc]j" 

Then the cyclic index of cyclic group C4 is 

Z(C4) = ¼(x41 + xZ2 + 2x,),  

and the figure counting series 

e(u, v, w, z) = u + v + w + z, 

(Berge, 1971). Substituting the latter into the former 
equation, we can obtain 

z(C4,  u + v + w + z ) = l [ ( u  + v + w + z p  

+ (u z + v 2 + w E + zZ) 2 + 2(u 4 + v' + w 4 + z4)l. 

The coefficient of uymwnz p in the polynomial expansion 
is the number of different sequences with four symbols, 
l A's, m B's, n C's and p D's. The sum of each 
coefficient gives us the total number of non-equivalent 
symbol sequences. The number of symbol sequences 

can also be counted by using 3 + u as the figure 
counting series instead of u + v + w + z, where the 
weight 1 is given for symbol A and the weights 0 for all 
the others. Then in 

Z ( C  4, 3 + u ) =  t[(3 + U) 4 "k- (3 + U2) 2 q- 2(3 + U) 4] 

=U 4 + 3 u  3+ 15U 2 + 2 7 u + 2 4 ,  

the coefficient of u ! shows the number of symbol 
sequences with l A's. Thus we know that there is 
1 sequence with 4 A's, 3 sequences with 3 A's, 15 
sequences with 2 A's, 27 sequences with 1 A, and 
24 sequences without A, the total number being 70. 

The derived sequences are shown in Table 1. It is 
very easy to draw out the corresponding pattern from 
the given symbol sequence. The 70 patterns corres- 
ponding to these 70 sequence symbols are basic unit 
patterns which extend to form infinite repeating patterns 
on the plane. It is true that they are not rotationaUy 
equivalent, but they are not necessarily independent of 
each other in the translational relation. The reason for 

Table 1. 70 rotationally non-equivalent configuration 
symbols in the UUDD ring 

The numerical values in the right-hand column are numbers of members 
involved in the subgroup, corresponding to the coefficients of u in the 
polynomial expansion Z ( C  4, 3 + u). 

A A A A  

A A A B  
A A A C  
A A A D  

A A B B  A B A B  
A A C C  A C A C  
A A D D  A D A D  
A A  B C  A A  C B  A C A B  
A A B D  A A  D B  A D A B  
A A  C D  A A  D C  A D A  C 

A B B B  
A C C C  
A D D D  
A B B C  A B C B  A C B B  
A B B D  A B D B  A D B B  
A C C B  A C B C  A B C C  
A C C D  A C D C  A D C C  
A D D B  A D B D  A B D D  
A D D C  A D C D  A C D D  
A B C D  A C B D  A D C B  

B B B B  
C C C C  
D D D D  
B B B C  
B B B D  
C C C B  
C C C D  
D D D B  
D D D C  
B B C C  B C B C  
B B D D  B D B D  
C C D D  C D C D  
B C C D  B C D C  B D C C  
B C D D  B D C D  C B D D  
B B C D  B B D C  B D B C  

(1) 

(3) 

(15) 

(27) 

A B D C  A C D B  A D B C  

(24) 
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this is as follows: Fig. 4 shows a pattern constructed 
from four unit patterns of AAAA, and we can see that 
the pattern contains not only one pattern of AAAA, but 
also two other non-equivalent patterns denoted 
by DBDB(BDBD) and CCCC. The pattern 
DBDB(BDBD) is obtained by shifting the rotation 
center by t2/2 (or tl/2), and the pattern CCCC by 
shifting by (t I + tz)/2, where t I and t 2 are repeating 
vectors along the x and y directions. We can say that 
they are translationally related. The derivation of these 
translationally related patterns can be performed by 
drawing out all adjacent patterns, but the procedure is 
very tedious. One convenient method is presented in the 
following. Let X be a set of four boxes a, b, c, d, and R 
be three cyclic permutation operations r ~, r 2, r a, i.e., 

X =  {a,b,e,d}, R = {rl, r2, r3}, 

where 

rl [ABCD] r2 (ABCD] ra [ABCD] 
= \DABC] '  = ~CDAB]' = ~,BCDA]" 

Then the translation of the rotation center by t~/2 
causes a change of orientation symbols, which can be 
expressed by mapping X into R (Berge, 1971), 

(fftl/2 = r l  r3 r l  r3 • 

g 
t I 

(a) 

D B D B C C C C 

t2/2 l / ( t l + t 2 ) / 2  

A A A A  B D B D 

(b) 
Fig. 4. (a) A composite pattern constructed from four unit patterns 

of AAAA. (b) Four translationally related patterns which arc 
produced by shifting an original rotation center by t~/2, t2/2 and 
(t I + t2)/2 respectively. 

I l /  t2 b a b a t2/2 ( t l ÷ t 2 ) / 2  

t 1 t l / 2  

Fig. 5. Box sequence change resulting from shifting of the rotation 
center. 

Similarly, for the translations la/2 and (t I + tz)/2 the 
changes can be expressed as 

(~t2/2 ~ r3 r l  r3 r l  (fl(t~+t2)/2 ---- r2 r2 r2 r2 

The box sequence abcd must be also changed into the 
sequences badc, dcba, and cdab for the translations 
tt/2, t2/2 and (t I + t2)/2 respectively (Fig. 5). All these 
relations can be shown in Table 2(a), from which we 
can easily derive the translationally related sequences. 

For example, starting with an original sequence 
ABAD, the procedure for obtaining the h /2  translation- 
ally related sequence is as follows: 

(1) Set the original sequence symbol in the order of 
a box sequence abcd 

(2) In Table 2(a), select symbol D at the inter- 
section of column a with row A, symbol C at column b 
with row B, symbol D at column c with row A, 
symbol A on column d with row D, and replace the 
original sequence with 

D C D  

(3) Replace the box sequence symbol abed with the 
corresponding numbers in the bottom row 

(4) Rearrange the sequence symbols in increasing 
order of the numbers 

Table 2. Derivation tables for translationally related 
and enantiomorphic symbols in the UUDD ring 

(a) Translationally related 

tl/2 t2/2 (tl + t2)/2 

a b c d  a b c d  a b c d  

D B D B  B D B D  C C C C  
A C A  C C A  C A  D D D D  
B D B D  D B D B  A A A A  
C A  C A  A C A  C B B B B  

2 1 4 3  4 3 2 1  3 4 1 2  

(b) Enantiomorphic 

a b c d  

A A A A A  
B D D D D  
C C C C C  
D B B B B  

2 1 4 3  
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The sequence C D A B  is a desirable one. Two other 
related sequences CBAB and C B C D  are similarly 
obtained from the same table for la/2 and (t I + h ) /2  
respectively. The use of an electronic computer makes 
the derivation more easy. Thus it can be found that the 
70 rotationally non-equivalent patterns are reduced to 
23 translationally non-related ones, all of which are 
shown in Table 3. Among them, however, there are still 
some enantiomorphic pairs, i.e. left- and right-handed. 
They can be recognized by visual inspection, or by the 
following simple procedure. Let r be a cyclic per- 
mutation operation 

Y = 

D C  

then the change of the orientation symbols by an 
enantiomorphic operation, in this case the mirror plane 
being set vertically through the center of the board, can 
be expressed as 

~0 E ~ 
r r  

and the box sequence abed is changed into the sequence 
bade. These relations are shown in Table 2(b), from 
which six pairs of enantiomorphic patterns can be 
derived: 

and the figure counting series e(u, v) = u + v, so 

Z ( C  4, 1 + u ) =  1 + u + 2u 2 + u 3 + u 4, 

from which the following six rotationally non- 
equivalent patterns can be immediately written down: 

A A A A ,  A A A B ,  A A B B ,  A B A B ,  A B B B ,  BBBB.  

Mapping of X into R in deriving the translationally non- 
related patterns can be expressed as 

(/gtt/2 = (/7t2/2 = 
F 1 F 1 r I r I F 1 r I r I r 1 

( a b e ; )  
~0(t I + h ) / 2  = 

f 0 r 0 r 0 

where 

(::) r ° = and r I = • 

B 

The relations are shown in Table 4(a), from which the 
two translationally related pairs can be derived: 

A A A A  and B B B B ,  A A A B  and A B B B .  

These two pairs are also in the enantiomorphic relation, 
so the total number of independent patterns is four, all 
of which are shown in Fig. 8. 

A A A B  and A A D A ,  A A B B  and A A D D ,  A B A B  and 
D A D A ,  A A B C  and AA CD, AA CB and A A D C ,  A CAD 

and CABA. 

Thus we have 17(=23 -- 6) independent patterns, 
which are completely consistent with those of Smith & 
Rinaldi (1962), except for those which are enantio- 
morphic. All the patterns obtained are shown with their 
new notation symbols in Fig. 6. 

C o n f i g u r a t i o n s  b a s e d  o n  the  UDUD r ing  

In the UDUD ring the upward- and the downward- 
pointing tetrahedra alternate to form four-membered 
rings, and therefore there are only two kinds of tile 
orientations in one box as shown in Fig. 7(a). The cycle 
index is 

Z(C4 ) __ 1 4 2X4)  ' - - ~ ' ( X  1 + 2 2  + 

Table 3. 23 rotationally non-equivalent and trans- 
lationally non-related configuration symbols in the 

UUDD ring 

A A A A  A A C C  A C A B  A C A D  
A A A B  A C A C  A A B D  A B B C  
A A A C  A A D D  A A D B  A C B B  
A A A D  A D A D  A B A D  A B C D  
A A B B  A A B C  A A C D  A D C B  
A B A B  A A C B  A A D C  

a a a a  x a t~ t~  

N ®  ® 
a a a 8 a a : l  ~ a a D 1~ 

N ® 
a a a c  a S a p  

® ®  N 
a a B B a a D D a ~: a D 

• , D a 1~ a a I~ c l i  

N ........... N 
a ,~ c c ~ n c 

® N 
a c a ~: a 1~ 1~ c 

• a a c rJ a c: t~ r 

N N  
a a c g  a a 0 c  

® 
c a s a  

Fig. 6. 17 possible configuration patterns and their notation 
symbols in the UUDD ring. Enantiomorphic patterns are paired 
together. These are all composite, constructed from four unit 
patterns. Smith & Rinaldi (1962) notation is also shown. 
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Configurations based on the U U U D  ring 

The number  of possible tile orientations in one box is 
the same as in the UUDD ring [Fig. 7(b)]. Hence the 
number  and the notat ion symbols  of both rotationally 
non-equivalent and translationaUy non-related pat terns 
are exactly the same for the UUDD ring. In this case, 
however,  mapping of  X into R in the enant iomorphic  
operat ion can be expressed as 

The relations are shown in Table 4(b), f rom which the 
following seven enant iomorphic  pat terns can be easily 
derived: 

A A A A  and D D D D ,  A A A B  and DDCD,  A A A D  and 
DDAC,  A A B C  and DDBC,  A A C B  and DDCB,  A A B D  

and DDA C, A A D B  and DDCA.  

Therefore the total number  of  independent pat terns  is 
16 (=23 - 7), all of  which are shown in Fig. 9. 

(Oe= , w h e r e r =  • 
r r  D C B  

Table 4. Derivation tables for  translationally related 
symbols in the UDUD ring and enantiomorphic ones in 

the UUUD ring 

(a) Translationfllyrelated 
tt/2 

a b c d  

A B B B B  
B A A A A  

2 1 4 3  

(b) En~tiomorp~c 
a b  c d  

A D D D D  
B C C C C  
C B B B B  
D A A A A  

2 1 4 3  

t2/2 (t t + tO/2 

a b c d  a b c d  

B B B B  A A A A  
A A A A  B B B B  

4 3 2 1  3 4 2 1  

Conclusion 

The above systematic  derivation has disclosed that  
there are 17 different configurations (including six 
enant iomorphic)  in the UUDD ring, four different ones 
(two enant iomorphic)  in the UDUD ring, and 16 
different ones (seven enant iomorphic)  in the UUUD 

m 
1t 

Fig. 8. Four possible configuration patterns and their symbol 
notations in the UDUD ring. Smith & Rinaldi (1962) notation 
is also shown. 

A A A A D D I~ D ,~ D a D 

N N  

a a A (: ., .', (; 

I 1 N  N 
ee N 
N 

a a c (; 

N ee 
(a) (b) . . . . . . . . . . , , ,  

Fig. 7. (a) Two different tile orientations (A,B) in one box, a, in the 
UDUD ring. (b) Four different tile orientations (A,B,C,D) in one 
box, a, in the UUUD ring. 

D D ~ c 

N 
l) t~ c.: g 

N 
D 1~ a (: 

N 
:) [ i  (: A 

Fig. 9. 16 possible configuration patterns and their symbol 
notations in the UUUD ring. Enantiomorphic patterns are paired 
together. Smith & Rinaldi (1962) notation is also shown. 
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ring. The results have contained not only all the 
configurations presented by Smith & Rinaldi (1962), 
but also some other possibilities not predicted by them, 
especially in the UUUD ring. 

The derivation procedure mentioned here is com- 
pleted by the symbol operation only, without treating 
any real or symbolized configuration models. There- 
fore, starting tile orientations different from those used 
here might lead to different patterns from those 
mentioned, but the number and the kinds of symbol 
notations for derived configurations are invariant. 

The new notation system is so simple and so faithful 

to the structure that it is now very easy to draw out or 
recall the corresponding configuration from the given 
symbol only. 
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Abstract 

Coincidence-site lattices and pattern-shift lattices 
(DSC) are of importance in the structural model of 
grain boundaries and crystalline interfaces. If two 
lattices can be represented by two Poisson distri- 
butions, the scalar product and the convolution product 
of these two functions allow the respective definitions of 
the coincidence-site lattice and the DSC lattice 
associated with these two lattices. These two operations 
are associative and commutative. After specification of 
the conditions in which they are also distributive, it is 
shown that this approach allows generalization of the 
twin-product notion and indicates the relationships 
between coincidence-site and DSC lattices, in particular 
for cubic lattices. 

Introduction 

Les r+seaux de coincidence et DSC* jouent un r61e 
important dans le module g6om6trique des joints de 
grains et des interfaces cristallines. L'&ude de ces 
r+seaux et de certaines de leurs propri6t6s, en particulier 
~i partir de la th6orie des nombres et de la th6orie des 
groupes, a fait l'objet de nombreuses publications 
(Woirgard & de Fouquet, 1972; Pumphrey & Bowkett, 
1972; Ishida & McLean, 1973, 1974; Fortes, 1973, 
1974; Grimmer, Bollmann & Warrington, 1974; 
Warrington & Grimmer, 1974; Grimmer, 1974a,b; 
Iwasaki, 1976). 

* Le sigle DSC ou DSCL vient de l'anglais Displacement Shift 
Complete Lattice. 

0567-7394/79/040553-11501.00 

I1 est possible d'aborder ces probl6mes h partir de la 
repr6sentation d'un r6seau , par une distribution de 
Poisson, soit 

~= ~ ~ ~ ~(r--mal--na2--Pa3). (1) 
m n p 

Dans cette expression m, n, p sont des entiers positifs 
ou n6gatifs, a~, a2, a 3 sont des vecteurs d6finissant une 
maille primitive du r6seau ~ dont chaque point est 
repr6sent6 par une fonction fi,~p (r) locale. 

Apr6s avoir montr6 que les r~seaux de coincidence et 
DSC peuvent se d~finir respectivement h partir du 
produit scalaire et du produit de convolution de distri- 
butions de Poisson, nous &udierons des exemples de 
propri~t6s de ces r~seaux, en particulier dans le syst~me 
cubique. 

Repr6sentation alg6brique des r6seaux de coincidence et 
DSC 

Dans ce qui suit, nous nous placerons dans l'espace 
euclidien ~ trois dimensions et nous adopterons les 
notations suivantes: les lettres minuscules seront 
utilis6es pour nommer des r6seaux (ou les fonctions 
associ6es ~t ces r6seaux) de l'espace direct, les lettres 
majuscules pour des r6seaux de l'espace r6ciproque; 
ainsi, ~ et ~ repr6senteront les r6seaux a e t  t ,  ~ et 
~ leur r6seau r6ciproque respectif, c,,~ le r~seau de 
coincidence et d_ ,  le r6seau DSC construits sur~,~ et ~, 
~,~/3 le r6seau d~ coincidence et ~ , ~  le r6seau DSC 
construits sur ~9~,~ et ~'~. De plus le passage de respace 

© 1979 International Union of Crystallography 


