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mitted modes N,, are listed. The permitted modes are
those with positive 4 or positive y". Clearly, the number
of permitted modes satisfies the relation, N, = 2(N —

N Brasg)‘

II1. Discussion and conclusion

With the above considerations, it has been shown that
at the exact N-beam diffraction position y” and u
always have the same sign. As mentioned above, the
absorption coefficient of a permitted mode must be
positive. The permitted mode should always have
positive y associated with it. For both o- and =-
polarized wavefields, the number of modes having
negative absorption coefficients, according to (13) and
Table 1, is equal to 2Ny,,... The number of permitted
modes is then the number of the rest of the modes, i.e.
2N — 2Ny, In other words, it is twice the number of
transmitted beams, including the incident one. This is
exactly consistent with the characteristics of two-beam
cases discussed above. Apparently, this relation also
holds for N-beam Borrmann diffraction, in which no
Bragg reflections are involved. The number of permit-
ted modes equals the number of total possible modes,
2N.

Although this relation is quite general, it is not
applicable to those cases which involve extremely
asymmetric reflections. For such cases, higher-order
terms of (4k) need to be considered. This leads to more
permitted modes since the equation of dispersion has
the form of a high-order polynomial. Besides, extra
modes may be introduced by some related physical
phenomenon, such as the specular reflection of X-rays
from the crystal surface where the glancing angle of the
incident beam is less than 1 or 2° (Kishino & Kohra,
1971).
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Nevertheless, without extremely asymmetric reflec-
tion in N-beam dynamical diffraction, the relation N, =
2(N — Ny,oq) holds as a general rule for determining
the number of permitted modes of wave propagation.
As stated before, the diffracted intensities can be
calculated by solving the equations obtaining from the
boundary conditions for these N, wavefields. Based on
this, the interpretation of Aufhellung (Wagner, 1923;
also quoted by Mayer, 1928) and Umwegangregung
(Renninger, 1937) effects in terms of the dynamical
theory of diffraction is possible.
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Abstract

The number of possible combinations of parallel four-
membered rings, of the same kind, forming an eight-
membered ring is systematically derived by a different
method from that of Smith & Rinaldi [Mineral. Mag.

0567-7394/79/040547-07801.00

(1962). 33, 202—211]. 17 different configurations (in-
cluding six enantiomorphic) in the UUDD ring (U and
D represent upward- and downward-pointing tetra-
hedra respectively), four different ones (two enantio-
morphic) in the UDUD ring, and sixteen different ones
(seven enantiomorphic) in the UUDD ring are shown
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with their new pattern representations and symbol
notations.

Introduction

A simple convenient symbolism was developed by
Smith & Rinaldi (1962) in order to classify and
describe framework structures which are formed from
parallel four- and eight-membered rings of TO, (T =
Al, Si) tetrahedra. According to them, possible four-
membered rings can be represented in terms of the
codes UUDD, UDUD, UUUD, and UUUU, where the
symbols U and D denote an upward and a downward
pointing tetrahedron respectively. Various eight-
membered rings can be formed by combining these
four-membered rings. Imposing a restriction on repeat
distances in the plane (less than 15 A), Smith & Rinaldi
(1962) showed that there are 17 possible different
configuration types for the arrangement of the UUDD
ring, four types for the UDUD ring, seven types for the
UUUD ring, and one type for the UUUU ring.
However, there are no detailed explanations of the
numbers of possible configurations, or of the relation
between the symbol notation and the configuration.
These problems are important as a first step towards
consideration of more complex framework structures.
This paper presents a different systematic derivation of
the possible combinations, and a new notation system
for the configurations.

In the following treatment, various restrictions such
as the repeating distances, or the parallelism of four-
and eight-membered rings are the same as in Smith &
Rinaldi (1962), and the trivial case of the UUUU ring is
not discussed.

Configurations based on the UUDD ring

Fig. 1(a) is a structure model of harmotome
(BaAl,SiO,.6H,0), and Fig. 1(b) the symbolized
model of Smith & Rinaldi (1962). Now if we represent
one UUDD ring by one square tile consisting of black
and white triangles, in which a black triangle denotes
the DD and a white one the UU, then the harmotome
configurations can be shown as a tile arrangement
pattern, as shown in Fig. 1(c). It can be also considered

(@) (b) (©
Fig. 1. Three different representations of the harmotome structure
(BaAl,Si O,,.6H,0). (a) Original harmotome structure showing
linkage between (Si, Al)O, tetrahedra (Sadanaga, Marumo &
Takéuchi, 1961). (b)) UUDD symbol representation by Smith &
Rinaldi (1962). (c) Pattern representation using black and white
tiles.

FRAMEWORK STRUCTURES FROM FOUR- AND EIGHT-MEMBERED RINGS

that this pattern is formed by putting four square tiles
with different orientations into the four distinct boxes.
Then the enumeration of possible combinations of the
four-membered UUDD ring becomes equivalent to
counting the number of different arrangement patterns
of the tiles in the four boxes.

Let the four boxes on a 2 x 2 board be denoted as a,
b, ¢ and d. Then each box can accept independently
four differently oriented tiles as shown in Fig. 2(a).
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Fig. 2. (a) Four boxes abcd (left) and four different tile orientations
(right). (b) Two rotationally equivalent patterns.
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Fig. 3. (a) Four different tile orientations (4,B,C,D) in four distinct
boxes (a,b,c,d) in the UUDD ring. (b) Two examples of pattern-
notation symbols.
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Therefore the total number of possible arrangement
patterns is 4 x 4 X 4 x 4 = 256. However, there are
many rotationally equivalent patterns among them.
Two patterns are rotationally equivalent if one can be
transformed into the other by a rotation around the
center of the board. One example is shown in Fig. 2(b),
in which pattern (1) is transformed into pattern (2) by a
90° anticlockwise rotation, and pattern (2) into pattern
(1) by a similar clockwise rotation.

We first count the total number of rotationally non-
equivalent patterns using combinatorial mathematics.
As stated above, a tile can take four orientations, which
we call 4, B, C and D in box a. The orientations B, C,
and D can be obtained by transforming orientation 4
by 90, 180 and 270° anticlockwise rotations respec-
tively, which are shown in the first column a in Fig.
3(a). Now the tile in the box a can be transformed into
the box b by a 90° anticlockwise rotation around the
center of the board. In this operation, the orientations
A, B, C and D in box a can be transformed into the new
orientations shown in column b, which we call the
orientations A, B, C and D in box b. Performing
successive rotations, new orientations A, B, C and D in
boxes ¢ and d can be obtained. Using these orientation
notations, any tile arrangement pattern can be
represented simply by its sequence of orientation
symbols in the order of boxes a, b, ¢ and d. Two
examples are shown in Fig. 3(b). One more advantage
of this notation system is that all equivalent patterns
can be expressed in terms of a cyclic permutation of the
starting orientation symbol. Thus a pattern denoted by
the symbol BDAA is equivalent to those denoted by
DAAB, AABD and ABDA. Now we will count all the
non-equivalent sequences. Let D = {a, b, ¢, d} be a set
of four boxes on a board and R = {4, B, C, D} a set
of four orientations of tiles. We can specify a cyclic
group C, as a permutation group G acting on set D:

G— abcd\ (abcd\ [abcd\ (abcd
"\ \abed)’ \beda P \cdab)’ \dabc ||
Then the cyclic index of cyclic group C, is
Z(C)=3xt+x%+2x,),
and the figure counting series

e(u,o,w,z)=u+v+w+z,

(Berge, 1971). Substituting the latter into the former
equation, we can obtain

Z(Cpu+v+w+z)=Hu+v+w+2)?*
+ @+ 0+ wr+ 224+ 2wt + vt + wt + ZY))

The coefficient of u'v™w"z” in the polynomial expansion
is the number of different sequences with four symbols,
I A’s, m B’s, n C’s and p D’s. The sum of each
coefficient gives us the total number of non-equivalent
symbol sequences. The number of symbol sequences
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can also be counted by using 3 + u as the figure
counting series instead of 4 + v + w + 2z, where the
weight 1 is given for symbol 4 and the weights O for all
the others. Then in

ZCW3+uw=HB+uw*+ 3 +u)?+ 23 +ul

=u*+ 3ud + 15u? + 27u + 24,

the coefficient of u' shows the number of symbol
sequences with [ A’s. Thus we know that there is
1 sequence with 4 A’s, 3 sequences with 3 A’s, 15
sequences with 2 A’s, 27 sequences with 1 4, and
24 sequences without A, the total number being 70.

The derived sequences are shown in Table 1. It is
very easy to draw out the corresponding pattern from
the given symbol sequence. The 70 patterns corres-
ponding to these 70 sequence symbols are basic unit
patterns which extend to form infinite repeating patterns
on the plane. It is true that they are not rotationally
equivalent, but they are not necessarily independent of
each other in the translational relation. The reason for

Table 1. 70 rotationally non-equivalent configuration
symbols in the UUDD ring

The numerical values in the right-hand column are numbers of members
involved in the subgroup, corresponding to the coefficients of u in the
polynomial expansion Z(Cy, 3 + u).

AAAA n

AAAB
AAAC 3
AAAD

AABB
AACC
AADD
AABC
AABD
AACD

ABBB
ACcCC
ADDD
ABBC
ABBD
ACCB
ACCD
ADDB
ADDC
ABCD

BBBB
cccce
DDDD
BBBC
BBBD
CCCB
ccco
DDDB
DDDC
BBCC
BBDD
cCCDD
BCCD
BCDD
BBCD

(15)

A A A XA
AxADAw
coOXxxX
Armoaw

ENIR NN
con
ENE NN
O™

ABCB
ABDB
ACBC
ACDC
ADBD
ADCD
ACBD

ACBB
ADBB
ABCC
ADCC @7
ABDD
ACDD
ADCB ABDC

ACDB ADBC

BCBC
BDBD
cCDCD
BCDC
BDCD
BBDC

BDCC (24)
CBDD
BDBC
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this is as follows: Fig. 4 shows a pattern constructed
from four unit patterns of 4444, and we can see that
the pattern contains not only one pattern of 4444, but
also two other non-equivalent patterns denoted
by DBDB(BDBD) and CCCC. The pattern
DBDB(BDBD) is obtained by shifting the rotation
center by t,/2 (or t,/2), and the pattern CCCC by
shifting by (t, + t,)/2, where t, and t, are repeating
vectors along the x and y directions. We can say that
they are translationally related. The derivation of these
translationally related patterns can be performed by
drawing out all adjacent patterns, but the procedure is
very tedious. One convenient method is presented in the
following. Let X be a set of four boxes a, b, ¢, d, and R
be three cyclic permutation operations r!, r, r3, i.e.,
X=\a,b,c,d}, R={r',ri,r}},

where

"o (ABCD ,2_ (4BCD
“\bpaBc) " ~\cpas)

Then the translation of the rotation center by t,/2
causes a change of orientation symbols, which can be
expressed by mapping X into R (Berge, 1971),

abcecd
(pt|/2: r1 r3 rl r3 ¢

DBDB

ﬂ__ABCD)
~\BcDA4)

cccc

tZI
I

/(tlozz)/z

BDBD

()]

Fig. 4. (a) A composite pattern constructed from four unit patterns
of AAAA. (b) Four translationally related patterns which are
produced by shifting an original rotation center by t,/2, t,/2 and
(t, + 4)/2 respectively.

C d c d
t
Zllblalb]a t,/2 / (ty*1,)/2

C d
tl C t

Fig. 5. Box sequence change resulting from shifting of the rotation
center.

FRAMEWORK STRUCTURES FROM FOUR- AND EIGHT-MEMBERED RINGS

Similarly, for the translations t,/2 and (t, + t,)/2 the
changes can be expressed as

abcd abcd
¢t:/2 = r3 rl r3 rl ’ (p(tl+h)/2 - rz rz r2 rz N

The box sequence abcd must be also changed into the
sequences badc, dcba, and cdab for the translations
t,/2, t;/2 and (t, + t,)/2 respectively (Fig. 5). All these
relations can be shown in Table 2(a), from which we
can easily derive the translationally related sequences.

For example, starting with an original sequence
ABAD, the procedure for obtaining the t,/2 translation-
ally related sequence is as follows:

(1) Set the original sequence symbol in the order of

a box sequence abcd
( abcd
ABAD)

(2) In Table 2(a), select symbol D at the inter-
section of column a with row 4, symbol C at column b
with row B, symbol D at column ¢ with row A4,

symbol 4 on column 4 with row D, and replace the
original sequence with

abcecd
DcCDA/)
(3) Replace the box sequence symbol abcd with the
corresponding numbers in the bottom row

2143
DCDA)
(4) Rearrange the sequence symbols in increasing
order of the numbers

0234
CDA B/

Table 2. Derivation tables for translationally related
and enantiomorphic symbols in the UUDD ring

(a) Translationally related

t,/2 1,/2 (1, + t)/2
abced abced abcd
A DBDB BDBD cccec
B ACAC CACA DDDD
C BDBD DBDB AAAA
D CACA ACAC BBBB
2143 4321 3412
(b) Enantiomorphic
abcd
A AAAA
B DDDD
o cccece
D BBBB
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The sequence CDAB is a desirable one. Two other
related sequences CBAB and CBCD are similarly
obtained from the same table for t,/2 and (t, + t,)/2
respectively. The use of an electronic computer makes
the derivation more easy. Thus it can be found that the
70 rotationally non-equivalent patterns are reduced to
23 translationally non-related ones, all of which are
shown in Table 3. Among them, however, there are still
some enantiomorphic pairs, i.e. left- and right-handed.
They can be recognized by visual inspection, or by the
following simple procedure. Let r be a cyclic per-
mutation operation

ABCD
r= s
ADCB
then the change of the orientation symbols by an

enantiomorphic operation, in this case the mirror plane
being set vertically through the center of the board, can

be expressed as
(a be d)
Qg = ’
rrrr

and the box sequence abcd is changed into the sequence
badc. These relations are shown in Table 2(b), from
which six pairs of enantiomorphic patterns can be
derived:

AAAB and AADA, AABB and AADD,ABAB and
DADA, AABC and AACD, AACB and AADC, ACAD
and CABA.

Thus we have 17(=23 — 6) independent patterns,
which are completely consistent with those of Smith &
Rinaldi (1962), except for those which are enantio-
morphic. All the patterns obtained are shown with their
new notation symbols in Fig. 6.

Configurations based on the UDUD ring

In the UDUD ring the upward- and the downward-
pointing tetrahedra alternate to form four-membered
rings, and therefore there are only two kinds of tile
orientations in one box as shown in Fig. 7(a). The cycle
index is

Z(Cy)=H1(xt+x1+2x,),

Table 3. 23 rotationally non-equivalent and trans-
lationally non-related configuration symbols in the

UUDD ring
AAAA AACC ACAB ACAD
AAAB ACAC AABD ABBC
AAAC AADD AADB ACBB
AAAD ADAD ABAD ABCD
AABB AABC AACD ADCB
ABAB AACB AADC
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and the figure counting series e(u, v) = 4 + v, s0o
ZICyu l+uwy=1+u+2u>+u’+ul,

from which the following six rotationally non-
equivalent patterns can be immediately written down:

AAAA,AAAB, AABB, ABAB,ABBB, BBBB.

Mapping of X into R in deriving the translationally non-
related patterns can be expressed as

abcd abcd
Pz = rirtptpet) Poi2 = rirtetp)

abcd
O+1p2 = 40,0 0 0’

A B AB
»= and r'= .
AB BA
The relations are shown in Table 4(a), from which the
two translationally related pairs can be derived:

AAAA and BBBB,AAAB and ABBB.

These two pairs are also in the enantiomorphic relation,
so the total number of independent patterns is four, all
of which are shown in Fig. 8.

where

PR

C 3
Il T ;
Y A ¥ ¢ gl 8
f LA h i A
[ e

AABB AadDD CARA

DADA KCD

AABC AACD ACHR

AL, 7

A,

AACB AaDdDcC

Fig. 6. 17 possible configuration patterns and their notation
symbols in the UUDD ring. Enantiomorphic patterns are paired
together. These are all composite, constructed from four unit
patterns. Smith & Rinaldi (1962) notation is also shown.
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Configurations based on the UUUD ring

The number of possible tile orientations in one box is
the same as in the UUDD ring |Fig. 7(b)]. Hence the
number and the notation symbols of both rotationally
non-equivalent and translationally non-related patterns
are exactly the same for the UUDD ring. In this case,
however, mapping of X into R in the enantiomorphic
operation can be expressed as

(abcd ABCD
Q= , wherer = .
rrrr DCBA

Table 4. Derivation tables for translationally related
symbols in the UDUD ring and enantiomorphic ones in
the UUUD ring

(a) Translationally related

t,/2 /2 (t, + t)/2
abced abced abcd
A BBBB BBBB AAAA
B AAAA AAAA BBBB
2143 4321 3421
(b) Enantiomorphic
abcd
A DDDD
B cCccece
C BBBB
D AAAA
2143
a a
A
B
c
)
(@) )]

Fig. 7. (a) Two different tile orientations (4,B) in one box, a, in the
UDUD ring. (b) Four different tile orientations (4,B,C,D) in one
box, a, in the UUUD ring.

FRAMEWORK STRUCTURES FROM FOUR- AND EIGHT-MEMBERED RINGS

The relations are shown in Table 4(b), from which the
following seven enantiomorphic patterns can be easily
derived:

AAAA and DDDD, AAAB and DDCD, AAAD and
DDAC, AABC and DDBC, AACB and DDCB, AABD
and DDAC, AADB and DDCA.

Therefore the total number of independent patterns is
16 (=23 — 7), all of which are shown in Fig. 9.

Conclusion

The above systematic derivation has disclosed that
there are 17 different configurations (including six
enantiomorphic) in the UUDD ring, four different ones
(two enantiomorphic) in the UDUD ring, and 16
different ones (seven enantiomorphic) in the UUUD

R

H - e

XXX

Fig. 8. Four possible configuration patterns and their symbol
notations in the UDUD ring. Smith & Rinaldi (1962) notation
is also shown.

JUN Ut AN R DDBC

L DAD NaAED bpaAC

D0CA

AACC

TAD D AnCa

Fig.9. 16 possible configuration patterns and their symbol
notations in the UUUD ring. Enantiomorphic patterns are paired
together. Smith & Rinaldi (1962) notation is also shown.
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ring. The results have contained not only all the
configurations presented by Smith & Rinaldi (1962),
but also some other possibilities not predicted by them,
especially in the UUUD ring.

The derivation procedure mentioned here is com-
pleted by the symbol operation only, without treating
any real or symbolized configuration models. There-
fore, starting tile orientations different from those used
here might lead to different patterns from those
mentioned, but the number and the kinds of symbol
notations for derived configurations are invariant.

The new notation system is so simple and so faithful

Acta Cryst. (1979). A35, 553-563
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to the structure that it is now very easy to draw out or
recall the corresponding configuration from the given
symbol only.
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Abstract

Coincidence-site lattices and pattern-shift lattices
(DSC) are of importance in the structural model of
grain boundaries and crystalline interfaces. If two
lattices can be represented by two Poisson distri-
butions, the scalar product and the convolution product
of these two functions allow the respective definitions of
the coincidence-site lattice and the DSC lattice
associated with these two lattices. These two operations
are associative and commutative. After specification of
the conditions in which they are also distributive, it is
shown that this approach allows generalization of the
twin-product notion and indicates the relationships
between coincidence-site and DSC lattices, in particular
for cubic lattices.

Introduction

Les réseaux de coincidence et DSC* jouent un role
important dans le modéle géométrique des joints de
grains et des interfaces cristallines. L’étude de ces
réseaux et de certaines de leurs propriétés, en particulier
a partir de la théorie des nombres et de la théorie des
groupes, a fait I'objet de nombreuses publications
(Woirgard & de Fouquet, 1972; Pumphrey & Bowkett,
1972; Ishida & McLean, 1973, 1974; Fortes, 1973,
1974; Grimmer, Bollmann & Warrington, 1974;
Warrington & Grimmer, 1974; Grimmer, 1974a,b;
Iwasaki, 1976).

* Le sigle DSC ou DSCL vient de I’anglais Displacement Shift
Complete Lattice.

0567-7394/79/040553-11801.00

11 est possible d’aborder ces problémes a partir de la
représentation d’un réseau : par une distribution de
Poisson; soit

t=3% %> 6(r— ma, — na, — pa,). 1)
m n p
Dans cette expression m, n, p sont des entiers positifs
ou neégatifs, a,, a,, a, sont des vecteurs définissant une
maille primitive du réseau ¢ dont chaque point est
représenté par une fonction d,,,,, (r) locale.

Aprés avoir montré que les réseaux de coincidence et
DSC peuvent se définir respectivement a partir du
produit scalaire et du produit de convolution de distri-
butions de Poisson, nous étudierons des exemples de
propriétés de ces réseaux, en particulier dans le systéme
cubique.

Représentation algébrique des réseaux de coincidence et
DSC

Dans ce qui suit, nous nous placerons dans I’espace
euclidien a trois dimensions et nous adopterons les
notations suivantes: les lettres minuscules seront
utilisées pour nommer des réseaux (ou les fonctions
associées a ces réseaux) de Pespace direct, les lettres
majuscules pour des réseaux de l’espace réciproque;
ainsi, 2, et 2 P représenteront les réseaux a et 8, .#, et
A leur réseau réciproque respectif, ¢ ., le réseau de
coincidence et &, le réseau DSC construits sur s, et 2,
% ,p le réseau de coincidence et &, le réseau DSC
construits sur %, et #. De plus le passage de 'espace
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